Friday, 3 November 2017

N Queens Chess Problem Solution using C++

The N Queens Problem is the problem of placing N chess queens on an N×N chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the N queens problem of placing N non-attacking queens on an N×N chessboard, for which solutions exist for all natural numbers N with the exception of N=2 and N=3.

In the code, backtracking method is used to solve the problem. A queen is placed in a column that is known not to cause conflict. If a column is not found the program returns to the last good state and then tries a different column by increments or decrements the column index.

//A C++ code to Solve N-Queen Chess problem

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <conio.h>

const unsigned int N = 8;
using namespace std;

// Print N Queen chess problem solution
void PrintNQSolution(bool board[N][N])
{
     for (int i = 0; i < N; i++)
     {
           for (int j = 0; j < N; j++)
                cout << board[i][j] << "  ";
           cout << endl;
     }
}

/* check if a queen can be placed on the board[row][col]*/
bool CheckSafe(bool board[N][N], int row, int col)
{
     int i, j;
     for (i = 0; i < col; i++)
     {
           if (board[row][i])
                return false;
     }
     for (i = row, j = col; i >= 0 && j >= 0; i--, j--)
     {
           if (board[i][j])
                return false;
     }

     for (i = row, j = col; j >= 0 && i < N; i++, j--)
     {
           if (board[i][j])
                return false;
     }

     return true;
}

/*solve N Queen problem */
bool SolveNQ(bool board[N][N], int col)
{
     if (col >= N)
           return true;
     for (int i = 0; i < N; i++)
     {
           if (CheckSafe(board, i, col))
           {
                board[i][col] = true;
                if (SolveNQ(board, col + 1) == true)
                     return true;
                board[i][col] = false;
           }
     }
     return false;
}

/* solves the N Queen problem using Backtracking and print the solution.*/
bool SolveAndPrintNQ()
{
     bool board[N][N] = { 0 };
     if (SolveNQ(board, 0) == false)
     {
           cout << "Solution does not exist" << endl;
           return false;
     }
     PrintNQSolution(board);
     return true;
}

int main()
{
     cout << "**** " << N << " Queens Problem Solution *****\n\n";
     SolveAndPrintNQ();
     _getch();
     return 0;
}


Output: